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In recent years, flash floods in Ghotki and Kashmore districts 
in Pakistan have seriously affected both people and their ways 
of earning a living. Addressing challenges related to flooding 
means utilizing a methodology that considers both the 
hydrology, of water, the environment, the soil, the economy 
and social impacts. Flood susceptibility mapping helps inform 
how to control and plan floods. A bivariate probability analysis 
employing the frequency ratio (FR) methodology was 
conducted during this investigation to develop flood 
vulnerability assessments for Ghotki and Kashmore. A map 
was produced using the 130 past flood locations in the two 
districts. To establish the models, the data from these 
localities were randomly divided into 70% for model 
development and 30% for assessment. Among the parameters 
incorporated in the analysis were aspect, slope, elevation, 
rainfall, type of soil, use of land, proximity to roadways and 
rivers and NDVI and NDSI figures. How each factor affects 
flooding was assessed by checking its relationship with 
previous floods. From the analysis, scientists found that 
approximately 18% of the study area was classified as 
extremely flood susceptible, 30.9% as highly flood 
susceptible, 20.7% as moderately flood susceptible, 20.6% as 
minimal flood susceptibility and 9.8% as negligible flood 
susceptibility. Using the metrics from the validation set, the 
Foul Reader showed an accurate prediction rate of 75%. 
Moreover, the resulting susceptibility maps were compared to 
the real floods of 2010 and 2022, showing that the model 
reliably predicts flood-prone areas. As a result, the FR model 
is demonstrated to support the activities of governmental 
organizations, administrators and policy-makers in preventing 
and managing floods in the region. 
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1. Introduction 
 
Floods are considered one of the deadliest natural hazards for people everywhere 

(Mehravar et al., 2023). They harm many people, result in a lot of building damage, lead to 
economic losses and spark lots of uneasiness in society (Mitra & Das, 2022). As a result of 
climate change and the effects of fast urban growth and poor land use, floods in many 

countries have been more damaging lately (Choudhury et al., 2022). Due to the many 
economic and social effects it causes, experts from many places are studying this issue (Das, 
2020). UNISDR data shows that during the years 1995 to 2015, there were nearly 150,061 
global flood incidents causing 157,000 deaths because of floods. Eleven percent of all the 
fatalities from disasters worldwide occurred during such incidences (Wang et al., 2018). Many 
researchers claim that an average of 200 million people each year are affected by floods (Bui 
et al., 2019). Also, estimates based on climate change, changes in land use and a growing 

population mean there could be greater flooding by 2050, causing damages worth around 
US$ 1 trillion (Alexander et al., 2019).  

 
Floods may be categorized by four types: flash floods, riverine floods, coastal floods 

and urban floods (Costache & Tien Bui, 2020). When compared to other floods, flash floods 
bring the highest risk because they can take both many lives and cause extensive property 
damage very quickly (Bui et al., 2019). In addition, the river region carries a great deal of 

sediment which damages equipment and claims the lives of many people (Islam et al., 2021). 
Both developing and developed countries have experienced very serious flood damage 
(Mashaly & Ghoneim, 2018). In comparison to developed countries, developing nations are 
more at risk for flash floods owing to a lack of appropriate infrastructure, enough resources 
and the needed technology to predict flooding. Consequently, there exists a critical imperative 
to establish sophisticated prediction models for assessing flood event probability and to 
conduct susceptibility mapping of inundation-prone regions (Buba et al., 2021). 

 

Pakistan has a history marked by devastating floods. The 2010 flood alone resulted in 
losses amounting to ten billion USD. Based on thirty years of disaster data, floods have been 
consistently reported in Pakistan (Munir et al., 2022). The 2022 monsoon floods had severe 
consequences in Sindh, including its northern regions, where approximately one-third of 
Pakistan was submerged. Monsoon rains triggered widespread flooding, particularly affecting 
the provinces of Sindh and Balochistan. Pakistan had never previously encountered an 
uninterrupted cycle of monsoon torrents lasting eight consecutive weeks, resulting in 

extensive inundation across the country (Qamer et al., 2022). The relentless torrents led to 
long-term displacement for approximately 7.9 million people. Many individuals lost their 
homes and livelihoods, exacerbating enduring humanitarian needs. Over 4.4 million acres of 
agricultural land were destroyed, significantly impacting the livelihoods of farmers and 
exacerbating food insecurity in the region.  

 
Ghotki and Kashmore districts in the north of Sindh saw a great deal of damage to 

their infrastructure, a significant loss of farm crops and significant problems for local people. 
Because of destroyed roads and bridges, flooded land and ruined embankments, thousands 
in the region faced long-term challenges to their wellbeing and their economic prospects. 
Northern Sindh’s roads, bridges and irrigation systems were badly damaged as protective 
walls broke down and many towns and villages were flooded. As a result, floods caused great 
harm to both public and personal property It is important to take steps to control and prevent 
floods to save natural resources, fields, infrastructure and other important assets (Qamer et 
al., 2022). For this reason, understanding the risk of flooding is crucial for both forecasting 

and emergency services, since this knowledge supports improvement of management 
methods against future flooding (Tehrany et al., 2015).  

 
In many parts of the world, researchers depend on MCDA, RS and GIS techniques to 

reliably analyze and mark flood-prone regions. This approach becomes especially useful in 
areas where enough data is missing, allowing local planners to use it for flood control (Zou 
et al., 2013). Wang et al. (2018) observed that the AHP method has uncertainty because it 
depends on input from experts. The Food Risk (FR) model is valued because it is 
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straightforward and creates detailed food risk analysis and maps that many can understand 
and use (Liao & Carin, 2009). Although fairly new in the field of flood modeling, an FR model 
has become common in studies of landslides (Munir et al., 2022). Flood susceptibility maps 
made using the FR model should be used in plans aimed at lowering flood risks and their 
consequences, according to studies (Lee et al., 2012).  

 
Simulating floods is a challenging job because many considerations are needed. Flood 

mapping and risk assessment rely greatly on Remote Sensing (RS) technology which is very 
important for these tasks. RS, in combination with GIS, helps quickly collect, store, organize, 
work with, find, interpret and present information needed for finding hazard areas. In this 
work, we use multiple methods to show that flood modeling works well when brought together 
with geographic information systems. Both RS and GIS techniques were added to the 
Frequency Ratio (FR) approach for estimating flooding probabilities. The research looks at 

how Geographic Information Systems, Remote Sensing and Frequency Ratio models are used 
to assess and predict the chance of floods in Ghotki and Kashmore Districts. The main goal 
is to find and exactly define the flood susceptibility areas in the districts. The objective is to 
make flood susceptibility maps for Ghotki and Kashmore, conduct impact studies and gather 
substantial data for the FR model to categorize likely flood zones. The information helps 
people responsible for local government create ways to handle flooding.  
 

2. Materials and Methodology 

2.1. Study Area 
 
The region of District Ghotki in Sindh, Pakistan is situated between latitudes 28°24'N 

to 28°55'N and longitudes 69°07'E to 69°43'E. Current data suggests the population 
approximates 1.6 million. Ghotki is located adjacent to Kashmore territory toward the 
northern boundary, India toward the southern boundary, Sukkur territory toward the eastern 
border and Rahim Yar Khan district in Punjab province to the northeast. Within this district, 

summer thermal conditions routinely surpass 40°C (104°F), while winters remain 
comparatively moderate with average thermal readings ranging between 10°C and 25°C 
(50°F to 77°F). Precipitation predominantly occurs throughout the monsoon period which 
extends from July through September, rendering the territory notably arid. Located in 
northern Sindh, Pakistan, District Kashmore is encompassed by longitudes from 69°16'E to 
70°15'E and latitudes from 28°08'N to 28°54'N. Approximately 1.2 million inhabitants reside 
in Kashmore which shares boundaries with Jacobabad territory toward the western edge, 

Ghotki territory toward the southern perimeter and Punjab province to the northeast. The 
district's climatic conditions are characteristic of the region, featuring extended scorching 
summers exceeding 45°C (113°F) and temperate winters with thermal measurements 
ranging from “10°C to 25°C (50°F to 77°F).” 
 

 
Figure 1: Location Map of the Study Area 
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2.2. Methodology 
 
The purpose of creating a flow chart was to explain all the stages in the project: 

reviewing the flood inventory map, developing variables that depend on flood conditions, 
ranking those variables using the Initial, multi-collinearity test and information gain ratio the 
frequency ratio is applied to the current investigation (Table 1). 

 

 
Figure 2: Showing Research Methodology of the Study Area 

 

2.3. Flood Inventory Map 
 
Food inventory (FI) data is the historical record of flood-prone locations and is often 

generated using historical records. The FI map is excellent for forecasting future floods 
(Rahmati et al., 2016). For the inventory, 130 flood-prone locations were selected. Random 
points were employed in the study because the algorithm and results amplification are difficult 
when using the polygon layout of the catalog. Most associated natural hazard modeling has 
used this format for inventory data. (Paradhan et al., 2010). The entire dataset was divided 
into a 70/30 ratio, in which 91 points (70%) of the dataset were selected randomly to run 

the model, and 39 points (30%) were used for in validation (Fig 2).  
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Figure 3: Inventory Map of the Research Area 
 

 
Figure 4: Flood Extent in the Study Area During 2022 
 

2.4. Preparing Flood Conditioning Factors  
 

Establishing a solid spatial flood susceptibility model is difficult because it takes 
extensive data on the land, earth and water systems. Picking out the main factors that drive 
floods is crucial, since it helps us check if flood susceptibility maps are accurate. The nine 
factors used to describe flood conditioning in this research area are elevation, slope, aspect, 
land use/land cover (LULC), distance from the road, distance from the river, soil type and 
rainfall, each based on the accessible literature on flood vulnerability. Using NDSI and NDVI, 
after being recommended by Sturzenegger et al. (2019). All the data was processed to a 30-
meter-spatial resolution raster format. Flood modeling results depend on changes in 

underlying landscapes, so they are highly significant (Lu et al., 2020). An early ArcGIS 10.8 
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version was used to make a DEM map for the study area, sourcing the ASTER GDEM (version 
2) at a resolution of 30 meters. All slope, aspect, distance to highways and distance to rivers 
were obtained using the DEM. Such aspects affect future efforts in modeling and studying 
floods.  

 
Elevation is a main piece in the puzzle when considering flood modeling. It also means 

floodwater follows the slope and reaches further or stays closer as needed (Dodangeh et al., 
2020). You’re more unlikely to see flooding at higher altitudes because rain or snow collected 
on ascending terrain moves in a slower and less concentrated way. Flooding is more likely in 
low-lying locations, because water flows naturally downwards (Wang et al., 2018). Their 
location along the Indus River and their flat landscape mean the areas flood much more 
frequently. The low terrain and site close to a large river make areas around it more at risk 
from flooding after strong rain or increased river discharge. The slope determines the rate of 

water flow and is very important in causing floods, as reported by Stevaux et al. in 2020. To 
put it simply, a higher slope angle means water is more likely to flow, will infiltrate less and 
the water will move at greater speed. As a result, places that are level and not high such as 
the Ghotki and Kashmore districts, are more likely to be affected by flooding (Fig. 4b). In 
addition, one feature shapes the direction of floodwater and helps protect soil moisture (Chen 
et al., 2020). In this way, flooding is influenced by the factor as well. Areas with high moisture 
in the soil are one cause of sudden and heavy runoff (Fig. 4c).  

 
Floods occur more frequently when surface runoff and sediment transportation are 

increased because of changes in land use and land cover (Siswanto & Francés, 2019). The 
type of land use controls the generation and flow of surface runoff. Since water cannot sink 
into built-up areas, their surface levels rise more quickly and floods happen more often. No 
water seepage takes place in dense forests and thus flooding is often avoided there (Abd El-
Hamid et al., 2021). At all timescales, the reaction of water to floods is negatively linked to 
the quantity of vegetation (Dodangeh et al., 2020). For the study, we processed Sentinel-1 

satellite images to generate the Land Use Land Cover (LULC) map at a scale of 30 meters per 
pixel. We chose supervised algorithms in ERDAS to carry out LULC classification. For the LULC 
map, classes were designed as vegetation, water, desert area, bare land and built-up area 
(Fig. 4g). Because most sites hit by floods are beside rivers, localization of the model in 
relation to rivers plays a vital role. According to Tehrany et al. (2015) the distance from the 
stream is a major factor in identifying places at risk of flooding in a basin (2015). A location 
close to the river can experience severe flooding, as river flow more easily affects it (Gupta, 

2020).  
 
Floods have a lower chance of occurring the further you go away from the river. The 

volume of water held in the soil at the basin level controls the size of water-related flooding 
in specific regions (Van Binh et al., 2020). In the present work, the Euclidean Distance tool 
within the Spatial Analyst toolset in ArcMap 10.4 was applied to make the distance-from-
rivers layer (Fig 4h). The farther a location is from roads, the greater the surface water runoff 
and difficulty with draining water which makes those locations more likely to be affected by 
floods. It is important to grasp this idea for successful flood risk assessment, prevention and 
the design of cities. In ArcMap 10.8, the Euclidean Distance tool from the Spatial Analyst 
toolbox was implemented to prepare the distance-from-roads layer (Fig. 4i). How soil is 
formed affects the way in which rainwater is drained (Zhao et al., 2019). How soil properties 
affect water absorption affects the generation of runoff. Nevertheless, nearby conditions such 
as the local weather and the way soil is eroded can have a big effect on rainfall-runoff. A 
higher rate of infiltration is linked to lower numbers of flooding (Philip et al., 2019).  

 
A soil map was created in this study using the FAO soil portal and this was then 

assigned to three classes (Fig. 4j). It has been discovered that rainfall greatly affects flooding 
incidents (Pourghasemi et al., 2021). Floods often happen because of a sudden intense 
downpour (Peptenatu et al., 2020). Rainfall information used in the study was taken from the 
Pakistan Meteorological Department database and rainfall maps were constructed with ArcGIS 
10.8 using the kriging interpolation method (see Fig. 4e). NDSI was computed and acquired 

from a range of Sentinel-1 bands. Analytical methods displayed in NDSI (Fig. 4d) may be 
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used to gather improved data on soil properties from both vegetation and impermeable 
surfaces. By using the ratio between blue and red wavelengths in the ArcGIS Raster 
calculator, researchers could recognize areas of exposed soil, as well as other coverage types, 
including vegetation (Regmi et al., 2014). Using the (Eq.1), NDSI can be computed. 
 

𝑁𝐷𝑆𝐼 =
𝐵𝑎𝑛𝑑3−𝐵𝑎𝑛𝑑11

𝐵𝑎𝑛𝑑3+𝐵𝑎𝑛𝑑11
          (1) 

 
The relationship between vegetation and these bands was measured using the 

Normalized Difference Vegetation Index (NDVI). A high number on the ecotope scale is a sign 
that a location is a rainforest and a low number tells you it is a barren place like rock, sand 
or snow (Munir et al., 2022). Numerous free images from the Sentinel-1 satellite were found 
using the USGS Earth Explorer which is found at this link: https://earthexplorer.usgs.gov/ It 
is shown here with Equation 2:  
 

𝑁𝐷𝑉𝐼 =
𝐵𝑎𝑛𝑑5−𝐵𝑎𝑛𝑑7

𝐵𝑎𝑛𝑑5+𝐵𝑎𝑛𝑑4
          (2) 

 
Table 1 
Data Source of Research 
S. No Primary Data Spatial 

Resolution 
Format Source of Data 

1 SRTM 
(DEM) 

30m Raster https://opentopography.org/ 

2 Sentinel-2 10 m Raster https://earthexplorer.usgs.gov 
3 Soil Data 1:100,000 Vector https://www.fao.org/soils-

portal/data-hub/soil-maps-and-
databases/en/ 

4 Rainfall Data 1:100,000 Raster https://www.pmd.gov.pk/en/ 

 

2.5. Bivariate Statistical Analysis (BSA) 

2.5.1. Frequency Ratio Model (FR)  
 
Analysis of frequency ratios (FR) is a prominent bivariate technique extensively 

employed in flood susceptibility studies. It assesses the geographical association between 
independent and dependent variables. The choice of training locations considered the 
geography, climate and characteristics of each area, all considered individually in the analysis. 

The research successfully used the frequency ratio model to study flood susceptibility in 
numerous regions around the world (Khosravi et al., 2016). 

 

𝐹𝑅 =  
𝐹𝑙𝑜𝑜𝑑 𝑃𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟÷𝑇𝑜𝑡𝑎𝑙 𝐹𝑙𝑜𝑜𝑑 𝑃𝑜𝑖𝑛𝑡𝑠

𝐹𝑙𝑜𝑜𝑑 𝐶𝑙𝑎𝑠𝑠 𝐴𝑟𝑒𝑎÷𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎
        (3) 

 
After working out the FR values for each class, all the data for each contributing factor 

was merged to produce the final flood susceptibility map. To make a map for contributing 

areas that flood, the RF was calculated inside of the same probability range ([0, 1]) using 
Equation 4. 
 

𝑅𝐹 =
𝐹𝑎𝑐𝑡𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝐹𝑅

∑𝐹𝑎𝑐𝑡𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝐹𝑅
          (4) 

 
After normalization, every aspect it looks at is given the same weight which is another 

drawback of RF. Each source of floods was estimated using Equation 5, with the prediction 

rate (PR) or weight fine-tuned to deal with this issue and form mutual links among them. 
 

𝑃𝑅 =  (𝑅𝐹𝑚𝑎𝑥− 𝑅𝐹𝑚𝑖𝑛)/(𝑅𝐹𝑚𝑎𝑥 − 𝑅𝐹𝑚𝑖𝑛)        (5) 
 

https://opentopography.org/
https://earthexplorer.usgs.gov/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/en/
https://www.pmd.gov.pk/en/
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Figure 5: Parameters Used for FR Modeling (a) Elevation (b) Slope(c) Aspect (d) 
NDSI (e) Rainfall (f) NDVI (g) LULC (h) Distance from River (i) Distance from Road 
(j) Soil Type 
 
 
Table 3 
Results of the Frequency Ratio Analysis (FR) of Each Factor 
Parameters Class Class Pixels %  

Class Pixels 
Flood 
Pixels 

%  
Flood Pixels 

FR RF 

Slope < 1.37 4518555 45.0 2124962 51.1 0.470 0.276 

1.37 - 2.75 3390231 33.8 1378732 33.1 0.407 0.239 

2.75 - 4.47 1548214 15.4 506089 12.2 0.327 0.192 

4.47 - 7.39 504786 5.0 133359 3.2 0.264 0.155 

7.39 - 43.84 77556 0.8 18388 0.4 0.237 0.139 

Elevation < 65 1876875 18.7 1034830 24.9 0.551 0.359 

65-70 3600391 35.8 1769468 42.5 0.491 0.320 

70-76 3359262 33.4 1248235 30.0 0.372 0.242 

76-86 959421 9.5 110694 2.7 0.115 0.075 

86-120 260328 2.6 1018 0.0 0.004 0.003 

LULC Vegetation 832421 8.3 457753 11.0 0.550 0.262 

Water 1428796 14.2 906430 21.8 0.634 0.302 
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Desert 3417103 34.0 1849696 44.4 0.541 0.258 

Bare land 3201740 31.8 807692 19.4 0.252 0.120 

Built up 1176279 11.7 142578 3.4 0.121 0.058 

Aspect < 63.99 1900159 18.9 852675 20.5 0.449 0.216 

63.99- 140.29 1890276 18.8 753814 18.1 0.399 0.192 

140.29- 212.34 2208269 22.0 898622 21.6 0.407 0.196 

212.34 - 282.99 2059220 20.5 844216 20.3 0.410 0.198 

282.99 - 359.29 1981418 19.7 812203 19.5 0.410 0.198 

Rainfall < 344 4511148 47.0 1406140 35.1 0.312 0.152 

344 - 362 3572230 37.3 1608271 40.2 0.450 0.219 

362 - 384 879575 9.2 622617 15.6 0.708 0.345 

384 - 409 626355 6.5 365657 9.1 0.584 0.284 

409 - 449 467067 4.9 162272 4.1 0.347 0.169 

NDVI < 0.007 255693 2.6 181769 4.4 0.711 0.275 

0.007- 0.10 4115573 41.1 845500 20.3 0.205 0.079 

0.10- 0.20 1990598 19.9 1192477 28.6 0.599 0.232 

0.20 - 0.30 1714830 17.1 999163 24.0 0.583 0.225 

0.30 - 0.48 1940273 19.4 945218 22.7 0.487 0.188 

Soil map Sandy Loam 1353329 23.7 1031060 24.8 0.762 0.069 

Loam 1781313 31.1 1125668 27.1 0.632 0.057 

Sandy Clay loam 2493196 43.6 1141682 27.4 0.458 0.041 

Clay loam 93631 1.6 862535 20.7 9.212 0.833 

NDSI < -0.197 39 0.0 18 0.0 0.462 0.246 

-0.19 - -0.013 3735874 37.3 552075 13.3 0.148 0.079 

-0.013 - 0.07 2251047 22.5 1375849 33.0 0.611 0.326 

0.07 - 0.17 1870199 18.7 1138666 27.3 0.609 0.325 

0.17 - 0.34 2159808 21.6 1097519 26.4 0.508 0.271 

Distance 
From River 

<0.006 3867783 62.9 1802039 76.4 0.466 0.327 

0.006 - 0.014 3115021 50.7 1243239 52.7 0.399 0.280 

0.014 - 0.020 1612078 26.2 618167 26.2 0.383 0.269 

0.020- 0.028 1208641 19.7 437093 18.5 0.362 0.254 

0.028 - 0.050 213982 3.5 60029 2.5 0.281 0.197 

Distance  < 0.026 3471817 23.7 1464423 54.3 0.422 0.294 

From Road 0.026 - 0.056 2678973 7.7 1233386 45.7 0.460 0.321 

0.056 - 0.088 2106544 1.2 906368 33.6 0.430 0.300 

0.088 - 0.129 1278804 28.7 474192 17.6 0.371 0.259 

0.129 - 0.215 482020 55.0 83289 3.1 0.173 0.120 

 
You get the flood vulnerability index by adding each PR to the RF for each class, 

according to Equation 6. 
 
𝐹𝑉𝐼 = ∑ FR𝑛

𝑗=1            (6) 

 

2.6. Model Validation 
 
Ghotki and Kashmore Districts were marked on the flood susceptibility map following 

confirmation from using the Area Under the Curve (AUC) procedure. This approach, backed 
by science, reviews the FR model by examining the results with historic floods. Frequently 
referred to as the best method for testing FR models, the AUC method has seen use in several 
important research studies (Rahman et al., 2021). 
 

𝐴𝑈𝐶 =  ∑
(𝑋1+𝑋2)

2(𝑌2+𝑌1)
𝑛=100
𝑖=1              (7)    

 

Ranges of accuracy levels are: 0.50–0.60 as having low accuracy, 0.61–0.70 modest 
accuracy, 0.71–0.80 excellent accuracy, 0.81–0.90 very good accuracy and 0.91–1.00 
outstanding accuracy (Yesilnacar & Hunter, 2004). 
 

3. Results and Discussion 
 
The flood susceptibility of Ghotki and Kashmore districts was estimated using 

elevation, land use/cover (LULC), normalized difference soil index (NDSI), slope, aspect, 
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curvature, rainfall, NDVI, distances from rivers and roadways and soil type. These factors 
were systematically evaluated to quantify the region's vulnerability to flooding events. 

 
The study area exhibits a range of elevations, with the highest point recorded at 120 

meters and the lowest at 22 meters. Maximum elevations are concentrated in the 
southeastern desert region along the Indian border and small pockets in the southwestern 
part of the area (Fig. 4a). Slope angles, derived from DEM data, were categorized into five 
classes: < 1.3°, 1.3–2.7°, 2.7–4.4°, 4.4–7.3°, and > 7.3°. Areas with flatter slopes (< 1.3°) 
are predominantly located on both sides of the study area, marked in green (Fig. 4b). Lower 
slope gradients are associated with increased vulnerability to floods and flood-related 
incidents (Rahmati et al., 2016). Higher Flood Ratio (FR) values were observed in two lower 
slope gradient classes: < 1.3° with an FR of 0.47 and 1.3–2.7° with an FR of 0.4. In contrast, 
the area with a slope of 7.3° exhibited a lower FR value of 0.23 (Table 3). Aspect plays a 

significant role in hydrological processes, influencing evapotranspiration, frontal precipitation 
patterns, weathering, and the establishment of vegetation, especially in desert regions 
(Pourghasemi et al., 2013). In the study area, specific aspect ranges, such as < 63.99, 212.34 
to 282.99, and 282.99 to 359.29, exhibited high Flood Ratio (FR) values of 0.216 and 0.198, 
respectively (Table 3).  

 
Rainfall distribution across the study area was categorized into five classes (< 344, 

344–362, 362–384, 384–409, and > 409 mm) using ArcGIS 10.8 software. The northern side 
of the Kashmore district recorded the highest rainfall, while the extreme southwest desert 
area of the Ghotki district received the lowest precipitation (Fig. 4e). Analysis revealed that 
rainfall ranges between 362 to 384 mm and 384 to 409 mm exhibited high Flood Ratio (FR) 
values of 0.70 and 0.58, respectively, indicating increased flood susceptibility in these areas 
(Table 3). The study area's land cover and land usage were divided into five categories: 
vegetation, water, desert, dryland, and built-up. Following classification, the results indicate 
that 43% of the area is covered by vegetation, 2% by water, 20% by desert in the 

southeastern part, 20% by dryland, and 24% by built-up areas (Fig. 4g). In terms of flood 
susceptibility, water, and vegetation classes exhibited high Flood Ratio (FR) values of 0.63 
and 0.55, respectively, suggesting elevated vulnerability to flooding in these land cover types 
(Table 3).  

 
Flood susceptibility is significantly influenced by the Normalized Difference Vegetation 

Index (NDVI) assessment, with values ranging from -1 to +1 (Khosravi et al., 2016). 

According to Khosravi, negative NDVI values indicate water presence, while positive values 
signify vegetation cover, establishing a negative association between NDVI and flood risk 
(Paul et al., 2019). While lower NDVI levels indicate a higher danger of flooding, higher NDVI 
values indicate a higher susceptibility to flooding. In the study area, NDVI ranges < 0.007 
and 0.10 to 0.20 exhibited high Flood Ratio (FR) values of 0.711 and 0.599, respectively, 
highlighting areas with increased flood susceptibility (Table 3). Using the Normalized 
Difference Soil Index (NDSI), differences in the study area's soil composition using satellite 
imagery. Deng developed the Modified Normalized Difference Water Index (MNDWI), which 
depends on bare soil's high reflectance in the shortwave infrared wavelength and is inverted 
to create the NDSI. Despite its capability to identify large, dry bare soil areas, it may overlook 
smaller, scattered patches. Thermal infrared wavelength (TIR) was utilized for bare land 
detection (Aghdam et al., 2016).  

 
Results indicated that NDSI values ranging from -0.19 to -0.007 and 0.07 to 0.17 

exhibited high Flood Ratio (FR) values of 0.61 and 0.60, respectively, indicating areas with 

increased flood susceptibility in the study area (Table 3). Distance from roads significantly 
influences flood susceptibility and vulnerability mapping. Impervious roads and nearby urban 
surfaces play a crucial role in determining flood levels by limiting terrain permeability and 
serving as runoff outlets (Shuster et al., 2005). In the study area, maximum Flood Ratio (FR) 
values of 0.46 and 0.43 were observed, corresponding to distance class levels of 0.026 to 
0.056 and 0.056 to 0.088, respectively (Table 3). These findings underscore the impact of 
road infrastructure on flood dynamics and vulnerability assessment in the region. The 

distance from the river is an important consideration when determining flood risk, as areas 
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nearest to riverbanks are most susceptible to high water levels following floods. Typically, 
flood depth is highest near the river mouth or confluence. Regions located farther from these 
points are categorized as lower risk, whereas those nearby are deemed higher risk (Chapi et 
al., 2017).  

 
In this study, Less than 0.006 and 0.006 to 0.014 distances from the river showed 

high Flood Ratio (FR) values of 0.46 and 0.39, respectively (Table 3). These findings 
emphasize the significant role of river proximity in flood susceptibility mapping and risk 
assessment. The study area's soils were classified into Calcaric Fluvisols, Cambic Arenosis, 
and Haplic Yermin. Cambic Arenosis predominates in the southeastern part, while Haplic 
Yermin is prevalent in the central and western regions. Calcaric Fluvisols are found on both 
sides of the Indus River, and red gravelly soils cover the extreme northwest (Fig. 4j). 

 

Based on the Frequency Ratio (FR) values derived from each conditioning parameter 
subclass (as detailed in Table 2), a rating was assigned to assess flood occurrence 
correlations, ranging from weak (< 1) to strong (> 1) (Lee et al., 2012). The FR model (Eq. 
6) indicated that higher FR values corresponded to increased probabilities of flood 
occurrences. With the use of this model, five flood susceptibility zones were identified for the 
research area: There are four groups: very low (less than 5.0), low (5.0–7.5), moderate (7.5–
10.0), high (10.0–12.5) and very high (more than 12.5) (as shown in Fig. b). Land areas 
were identified through analysis into various groups determined by flood risk, with 18.3% 
having a very high risk, 30.9% a high risk, 20.7% a moderate risk, 20.6% a low risk and 
9.31% a very low risk (Table 4).  

 
The flood susceptibility changes from part of the study site with moderate to low risk 

to those facing high or very high levels. This pattern is particularly evident in the central 
Ghotki district, including the Kacha area, low-lying central district areas, and along the Indu's 
riverside, which are categorized as high-risk to extremely high-risk areas. Additionally, the 
western part of the Kashmore district is identified as a zone with very high flood risk (Fig. 5). 
The zones with high to extremely high flood susceptibility are identified by several critical 
variables that enhance their risk. Examples are land with considerable runoff, sluggishly 
draining soil, areas with silt and sand sediments, braided floodplains, lands below sea level, 
weak slope gradients and locations close to the main river. Using the Frequency Ratio 
approach, these factors are necessary to map which areas in the study area are expected to 
be most at risk of flooding. 

 
Table 4 
Statistical Analysis of Flood Vulnerability Classes in the Study Area 

S. No Flood susceptible class FR value range Histogram % of Area 

1 Very low < 5.0 931794 9.31 

2 Low 5.0–7.5 2063310 20.63 

3 Moderate 7.5–10.0 2079952 20.79 

4 High 10.0–12.5 3092292 30.92 

5 Very High > 12.5 1832947 18.32 

 
Although many models have been designed by researchers to assess flooding, 

confirming how well they perform is very important. Experiments have shown that the Flood 
Ratio (FR) model gives accurate results for predictions and forecasting (Chung & Fabbri, 
2003). Whenever the accuracy score is 1.0, it means the model can predict natural hazards 
without showing any preference towards any category (Pradhan & Buchroithner, 2010). This 
model success rate was assessed by using 39 flood points. It is estimated that possible future 
flood zones are listed as being of "moderate" or "very high" risk of flooding. 
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Figure 6: Flood Susceptibility Map of the Study Area Using Frequency Ratio Model 

 

4. Validation through the Area under Curve (AUC) 
 
A major result of the model is the flood forecast rate which is essential for checking 

how successful risk and susceptibility mapping is Tehrany et al. (2015). To prove the model, 
this work uses Area Under the Curve (AUC) while checking how well the positive findings 
correlated with negative ones (Fig. 6). A percentage of 30 of all flood points were selected 
and Equation(6) was used to assess the AUC value. According to the model, 75% of the tests 
were successful, as indicated by the AUC of 0.754. Satisfaction with this percentage was 
achieved despite the intrinsic limits of the data and how precise it was. It demonstrates how 
well the frequency ratio model and other variables predict flooding and measure how easy it 
is for floods to affect the study area. 
 

5. Conclusion 
 
Making maps of flood vulnerability is important for creating practical plans for flood 

disasters. Flood susceptibility data lets communities plan land use without any risk of flooding 
and assists planners by giving them useful knowledge. Researchers developed a flooding risk 
assessment visualization of both the urban centers of Rawalpindi and Islamabad utilizing a 
satellite imagery and GIS methodology in conjunction with a Biophysical Suitability Analysis 
(BSA) FR framework. A total of ten environmental parameters were examined: soil, LULC, 
rainfall, aspect, slope, elevation, road distance, river distance, NDVI and NDSI. At a 30-meter 
resolution, the inundation potential chart was utilized to create data layers and 130 samples 
were randomly selected, with 40 used for validation and the others for training. The precision 
with which each parameter layer is constructed is significant in determining flood-vulnerable 
area identification. The inundation probability was categorized into five classifications for the 

research region: minimal, slight, intermediate, severe and critical. Analysis demonstrated 
that 18.3, 30.9, 20.7, 20.6 and 9.31% of the terrain is extremely susceptible, highly 
susceptible, moderately, minimally and least likely to experience flooding. The area exhibits 
variation in flood susceptibility, starting with areas that are only moderately susceptible and 
ending with areas very susceptible to floods. It is mainly present in the central Ghotki area, 
covering Kacha, some mid-level areas in the district and by the Indus which have all been 
identified as being at high to very high risk. The western part of Kashmore district is 
particularly affected by the threat of floods. They are important parts of determining risk of 
flooding. When you look at the susceptibility assessments, you can expect "high" or "very 
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high" chances of future flooding. Evaluation using the ROC curve underscored the Frequency 
Ratio model's importance in vulnerability mapping, achieving a robust performance rate of 
75%, indicating consistent and reliable results. Thus, it is concluded that model accuracy 
correlates positively with the quality of conditioning factors, emphasizing their pivotal role in 
flood susceptibility mapping. For Ghotki and Kashmore Districts' flood-prone zones, key 
factors influencing susceptibility include soil type (32.5), elevation (14.9), LULC (10.2), and 
rainfall (8.0). Understanding the patterns of extreme climatic events, particularly floods, and 
implementing recommended adaptation strategies are essential. By delineating flood-prone 
areas, this model assists policymakers, government representatives, planners, and decision-
makers in creating suitable administrative plans and directing sustainable development 
strategies in the research area. 

 

 
Figure 7: Showing Area Under the Curve (AUC) Validation Graph 
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